Real-time, in sifu monitoring of surface reactions during plasma passivation of GaAs

نویسندگان

  • Eray S. Aydil
  • Zhen Zhou
  • Konstantinos P. Giapis
  • Yves Chabal
  • Jeffrey A. Gregus
  • Richard A. Gottscho
چکیده

Real-time, in situ observations of surface chemistry during the remote plasma passivation of GaAs is reported herein. Using attenuated total reflection Fourier transform infrared spectroscopy, the relative concentrations of -As-O, -As-H, -H,O, and -CHz bonds are measured as a function of exposure to the effluent from a microwave discharge through NH,, NDs, Hz, and D,. The photoluminescence intensity (PL) from the GaAs substrate is monitored simultaneously and used qualitatively to estimate the extent of surface state reduction. It was found that, while the -CH,(x = 2,3) and -As-O concentrations are reduced rapidly, the rates at which the -As-H concentration and the PL intensity increase are relatively slow. The concentration of -HZ0 on the GaAs surface increases throughout the process as surface arsenic oxides and the silica reactor walls are reduced by atomic hydrogen. These observations suggest that removal of elemental As by reaction with H at the GaAs-oxide interface limits the passivation rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An investigation on the passivation behavior of nitrogen enriched AISI 316L austenitic stainless steel

In the present work the effects of plasma nitridization on the passivation behavior of AISI 316L was investigated. To do this; nitriding treatments were carried out at 420°C for 1, 2, 4 and 16 hours. The phase composition and structure of the nitrided layer were studied by Low Angle X-ray diffraction and Scanning Electron Microscopy. The hardness of samples also was evaluated by Vickers microha...

متن کامل

In situ gas-phase hydrosilylation of plasma-synthesized silicon nanocrystals.

Surface passivation of semiconductor nanocrystals (NCs) is critical in enabling their utilization in novel optoelectronic devices, solar cells, and biological and chemical sensors. Compared to the extensively used liquid-phase NC synthesis and passivation techniques, gas-phase routes provide the unique opportunity for in situ passivation of semiconductor NCs. Herein, we present a method for in ...

متن کامل

Spectroscopic ellipsometric monitoring of electron cyclotron resonance plasma etching of GaAs and AlGaAs

Spectroscopic ellipsometric monitoring of electron cyclotron resonance plasma etching of GaAs and AlGaAs" (1995). Faculty Publications from the Department of Electrical and Computer Engineering. 73. In situ real time spectroscopic ellipsometry measurements were made during electron cyclotron resonance plasma etching of radio frequency biased GaAs and AlGaAs samples. Gas mixtures used were CH 4 ...

متن کامل

Passivation of GaAs surface by ultrathin epitaxial GaN layer

Ultrathin gallium nitride passivation layers grown in situ on near-surface InxGa1 xAs=GaAs quantum wells using metalorganic vapour-phase epitaxy (MOVPE) with dimethylhydrazine as nitrogen source are reported. Nitridation of GaAs using DMHy during the post-growth cool-down is also studied. The effect of passivation on the surface recombination rate of quantum well (QW) structures is characterize...

متن کامل

Passivation of GaAs surface by atomic-layer-deposited titanium nitride

The suitability of titaniumnitride (TiN) for GaAs surface passivation and protection is investigated. A 2–6nm thick TiN passivation layer is deposited by atomic layer deposition (ALD) at 275 C on top of InGaAs/ GaAs near surface quantum well (NSQW) structures to study the surface passivation. X-ray reflectivity measurements are used to determine the physical properties of the passivation layer....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999